Search results
Results from the WOW.Com Content Network
The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. Electrons emitted in this manner are called photoelectrons.
In explosions of very large stars (250 or more solar masses), photodisintegration is a major factor in the supernova event. As the star reaches the end of its life, it reaches temperatures and pressures where photodisintegration's energy-absorbing effects temporarily reduce pressure and temperature within the star's core.
The classic photomultiplier tube exploits the photoelectric effect: a photon of sufficient energy strikes a metal plate and knocks free an electron, initiating an ever-amplifying avalanche of electrons. Semiconductor charge-coupled device chips use a similar effect: an incident photon generates a charge on a microscopic capacitor that can be ...
This formula defines the photoelectric effect. Not every photon which encounters an atom or ion will photoionize it. The probability of photoionization is related to the photoionization cross-section, which depends on the energy of the photon and the target being considered. For photon energies below the ionization threshold, the ...
For example, the photons emitted by a radio station broadcast at the frequency ν = 100 MHz, have an energy content of νh = (1 × 10 8) × (6.6 × 10 −34) = 6.6 × 10 −26 J, where h is the Planck constant. The wavelength of the station is λ = c/ν = 3 m, so that λ/(2π) = 48 cm and the volume is 0.109 m 3.
For example, if two slits are separated by 0.5 mm (d), and are illuminated with a 0.6 μm wavelength laser (λ), then at a distance of 1 m (z), the spacing of the fringes will be 1.2 mm. If the width of the slits b is appreciable compared to the wavelength, the Fraunhofer diffraction equation is needed to determine the intensity of the ...
Popular examples of the Mandela effect. Here are some Mandela effect examples that have confused me over the years — and many others too. Grab your friends and see which false memories you may ...
Photoelectric effect Schematic illustration of the photoemission process. Using Einstein's method, the following equations are used: energy of photon = energy needed to remove an electron + kinetic energy of the emitted electron = + where h is the Planck constant;