Search results
Results from the WOW.Com Content Network
Under special cases, such as a very small adsorption area on a large surface, and under chemical equilibrium when there is no concentration gradience near the surface, this equation becomes useful to predict the adsorption rate with debatable special care to determine a specific value of in a particular measurement. [19]
These include argon, carbon dioxide, and water. Specific surface area is a scale-dependent property, with no single true value of specific surface area definable, and thus quantities of specific surface area determined through BET theory may depend on the adsorbate molecule utilized and its adsorption cross section. [2]
Values obtained for specific surface area depend on the method of measurement. In adsorption based methods, the size of the adsorbate molecule (the probe molecule), the exposed crystallographic planes at the surface and measurement temperature all affect the obtained specific surface area. [ 4 ]
The adsorption sites (heavy dots) are equivalent and can have unit occupancy. Also, the adsorbates are immobile on the surface. The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes.
The Gibbs adsorption isotherm for multicomponent systems is an equation used to relate the changes in concentration of a component in contact with a surface with changes in the surface tension, which results in a corresponding change in surface energy. For a binary system, the Gibbs adsorption equation in terms of surface excess is
Activated carbon. Activated carbon, also called activated charcoal, is a form of carbon commonly used to filter contaminants from water and air, among many other uses. It is processed (activated) to have small, low-volume pores that greatly increase the surface area [1] [2] available for adsorption or chemical reactions. [3]
The Hertz–Knudsen equation describes the non-dissociative adsorption of a gas molecule on a surface by expressing the variation of the number of molecules impacting on the surfaces per unit of time as a function of the pressure of the gas and other parameters which characterise both the gas phase molecule and the surface: [1] [2]
Capillary condensation is an important factor in both naturally-occurring and synthetic porous structures. In these structures, scientists use the concept of capillary condensation to determine pore size distribution and surface area through adsorption isotherms.