enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    An FM radio station transmitting at 100 MHz emits photons with an energy of about 4.1357 × 10 −7 eV. This minuscule amount of energy is approximately 8 × 10 −13 times the electron's mass (via massenergy equivalence). Very-high-energy gamma rays have photon energies of 100 GeV to over 1 PeV (10 11 to 10 15 electronvolts) or 16 nJ to 160 ...

  3. Compton wavelength - Wikipedia

    en.wikipedia.org/wiki/Compton_wavelength

    A particle of mass m has a rest energy of E = mc 2. The Compton wavelength for this particle is the wavelength of a photon of the same energy. For photons of frequency f, energy is given by = = =, which yields the Compton wavelength formula if solved for λ.

  4. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    His thesis started from the hypothesis, "that to each portion of energy with a proper mass m 0 one may associate a periodic phenomenon of the frequency ν 0, such that one finds: hν 0 = m 0 c 2. The frequency ν 0 is to be measured, of course, in the rest frame of the energy packet. This hypothesis is the basis of our theory."

  5. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    The energy of a system that emits a photon is decreased by the energy of the photon as measured in the rest frame of the emitting system, which may result in a reduction in mass in the amount /. Similarly, the mass of a system that absorbs a photon is increased by a corresponding amount.

  6. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.

  7. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  8. Brus equation - Wikipedia

    en.wikipedia.org/wiki/Brus_equation

    The radius of the quantum dot affects the wavelength of the emitted light due to quantum confinement, and this equation describes the effect of changing the radius of the quantum dot on the wavelength λ of the emitted light (and thereby on the emission energy ΔE = hc/λ, where c is the speed of light). This is useful for calculating the ...

  9. Rydberg formula - Wikipedia

    en.wikipedia.org/wiki/Rydberg_formula

    In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.