enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nash equilibrium - Wikipedia

    en.wikipedia.org/wiki/Nash_equilibrium

    The subgame perfect equilibrium in addition to the Nash equilibrium requires that the strategy also is a Nash equilibrium in every subgame of that game. This eliminates all non-credible threats , that is, strategies that contain non-rational moves in order to make the counter-player change their strategy.

  3. Trembling hand perfect equilibrium - Wikipedia

    en.wikipedia.org/wiki/Trembling_hand_perfect...

    In game theory, trembling hand perfect equilibrium is a type of refinement of a Nash equilibrium that was first proposed by Reinhard Selten. [1] A trembling hand perfect equilibrium is an equilibrium that takes the possibility of off-the-equilibrium play into account by assuming that the players, through a "slip of the hand" or tremble, may choose unintended strategies, albeit with negligible ...

  4. Battle of the sexes (game theory) - Wikipedia

    en.wikipedia.org/wiki/Battle_of_the_sexes_(game...

    The mixed strategy Nash equilibrium is inefficient: the players will miscoordinate with probability 13/25, leaving each player with an expected return of 6/5 (less than the payoff of 2 from each's less favored pure strategy equilibrium). It remains unclear how expectations would form that would result in a particular equilibrium being played out.

  5. Non-cooperative game theory - Wikipedia

    en.wikipedia.org/wiki/Non-cooperative_game_theory

    The solutions are normally based on the concept of Nash equilibrium, and these solutions are reached by using methods listed in Solution concept. Most solutions used in non-cooperative game are refinements developed from Nash equilibrium, including the minimax mixed-strategy proved by John von Neumann. [8] [13] [20]

  6. Strategy (game theory) - Wikipedia

    en.wikipedia.org/wiki/Strategy_(game_theory)

    In his famous paper, John Forbes Nash proved that there is an equilibrium for every finite game. One can divide Nash equilibria into two types. Pure strategy Nash equilibria are Nash equilibria where all players are playing pure strategies. Mixed strategy Nash equilibria are equilibria where at least one player is playing a mixed strategy ...

  7. Risk dominance - Wikipedia

    en.wikipedia.org/wiki/Risk_dominance

    Risk dominance and payoff dominance are two related refinements of the Nash equilibrium (NE) solution concept in game theory, defined by John Harsanyi and Reinhard Selten.A Nash equilibrium is considered payoff dominant if it is Pareto superior to all other Nash equilibria in the game. 1 When faced with a choice among equilibria, all players would agree on the payoff dominant equilibrium since ...

  8. Symmetric game - Wikipedia

    en.wikipedia.org/wiki/Symmetric_game

    Nash (1951) shows that every finite symmetric game has a symmetric mixed strategy Nash equilibrium. Cheng et al. (2004) show that every two-strategy symmetric game has a (not necessarily symmetric) pure strategy Nash equilibrium. Emmons et al. (2022) show that in every common-payoff game (a.k.a. team game) (that is, every game in which all ...

  9. Solution concept - Wikipedia

    en.wikipedia.org/wiki/Solution_concept

    A Nash equilibrium is a strategy profile (a strategy profile specifies a strategy for every player, e.g. in the above prisoners' dilemma game (cooperate, defect) specifies that prisoner 1 plays cooperate and prisoner 2 plays defect) in which every strategy played by every agent (agent i) is a best response to every other strategy played by all the other opponents (agents j for every j≠i) .