Search results
Results from the WOW.Com Content Network
Therefore, the electrostatic field everywhere inside a conductive object is zero, and the electrostatic potential is constant. The electric field, E {\displaystyle \mathbf {E} } , in units of Newtons per Coulomb or volts per meter, is a vector field that can be defined everywhere, except at the location of point charges (where it diverges to ...
Classical Electrodynamics is a textbook written by theoretical particle and nuclear physicist John David Jackson.The book originated as lecture notes that Jackson prepared for teaching graduate-level electromagnetism first at McGill University and then at the University of Illinois at Urbana-Champaign. [1]
Introduction to Electrodynamics is a textbook by physicist David J. Griffiths.Generally regarded as a standard undergraduate text on the subject, [1] it began as lecture notes that have been perfected over time. [2]
The Kelvin water dropper, invented by Scottish scientist William Thomson (Lord Kelvin) in 1867, [1] is a type of electrostatic generator. Kelvin referred to the device as his water-dropping condenser. The apparatus is variously called the Kelvin hydroelectric generator, the Kelvin electrostatic generator, or Lord Kelvin's thunderstorm.
In physics, Gauss's law for magnetism is one of the four Maxwell's equations that underlie classical electrodynamics.It states that the magnetic field B has divergence equal to zero, [1] in other words, that it is a solenoidal vector field.
Electrostatic induction, also known as "electrostatic influence" or simply "influence" in Europe and Latin America, is a redistribution of electric charge in an object that is caused by the influence of nearby charges. [1]
The operator "delta" (Δ) is used to represent a difference in a quantity, so we can write ΔV = V 1 − V 2 and ΔI = I 1 − I 2. Summarizing, for any truly ohmic device having resistance R , V / I = Δ V /Δ I = R for any applied voltage or current or for the difference between any set of applied voltages or currents.
The net current into a volume is = where S = ∂V is the boundary of V oriented by outward-pointing normals, and dS is shorthand for NdS, the outward pointing normal of the boundary ∂V. Here J is the current density (charge per unit area per unit time) at the surface of the volume. The vector points in the direction of the current.