enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In quantum mechanics, an atomic orbital (/ ˈ ɔːr b ɪ t ə l /) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the ...

  3. SIESTA (computer program) - Wikipedia

    en.wikipedia.org/wiki/SIESTA_(computer_program)

    It uses atomic orbitals as a basis set, allowing unlimited multiple-zeta and angular momenta, polarization, and off-site orbitals. The radial shape of every orbital is numerical, and any shape can be used and provided by the user, with the only condition that it has to be of finite support, i.e., it has to be strictly zero beyond a user ...

  4. File:Atomic orbitals and periodic table construction.ogv

    en.wikipedia.org/wiki/File:Atomic_orbitals_and...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  5. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...

  6. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    When atoms interact to form a chemical bond, the atomic orbitals of each atom are said to combine in a process called orbital hybridisation. The two most common types of bonds are sigma bonds (usually formed by hybrid orbitals) and pi bonds (formed by unhybridized p orbitals for atoms of main group elements).

  7. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Electron atomic and molecular orbitals A Bohr diagram of lithium. In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1]

  8. Electron pair - Wikipedia

    en.wikipedia.org/wiki/Electron_pair

    Therefore, for two electrons to occupy the same orbital, and thereby have the same orbital quantum number, they must have different spin quantum numbers. This also limits the number of electrons in the same orbital to two. The pairing of spins is often energetically favorable, and electron pairs therefore play a large role in chemistry.

  9. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    Lewis structure of a water molecule. Lewis structures – also called Lewis dot formulas, Lewis dot structures, electron dot structures, or Lewis electron dot structures (LEDs) – are diagrams that show the bonding between atoms of a molecule, as well as the lone pairs of electrons that may exist in the molecule.