Search results
Results from the WOW.Com Content Network
Consider a long, thin rod of mass and length .To calculate the average linear mass density, ¯, of this one dimensional object, we can simply divide the total mass, , by the total length, : ¯ = If we describe the rod as having a varying mass (one that varies as a function of position along the length of the rod, ), we can write: = Each infinitesimal unit of mass, , is equal to the product of ...
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
In continuum mechanics, the most general form of an exact conservation law is given by a continuity equation. For example, conservation of electric charge q is = where ∇⋅ is the divergence operator, ρ is the density of q (amount per unit volume), j is the flux of q (amount crossing a unit area in unit time), and t is time.
The number density (symbol: n or ρ N) is an intensive quantity used to describe the degree of concentration of countable objects (particles, molecules, phonons, cells, galaxies, etc.) in physical space: three-dimensional volumetric number density, two-dimensional areal number density, or one-dimensional linear number density.
Besides deflection, the beam equation describes forces and moments and can thus be used to describe stresses. For this reason, the Euler–Bernoulli beam equation is widely used in engineering, especially civil and mechanical, to determine the strength (as well as deflection) of beams under bending.
For example, w = 0 describes a matter-dominated universe, where the pressure is negligible with respect to the mass density. From the generic solution one easily sees that in a matter-dominated universe the scale factor goes as a ( t ) ∝ t 2 / 3 {\displaystyle a(t)\propto t^{2/3}} matter-dominated Another important example is the case of a ...
There are different derivations for the variable-mass system motion equation, depending on whether the mass is entering or leaving a body (in other words, whether the moving body's mass is increasing or decreasing, respectively). To simplify calculations, all bodies are considered as particles. It is also assumed that the mass is unable to ...