Search results
Results from the WOW.Com Content Network
Convection is also seen in the rising plume of hot air from fire, plate tectonics, oceanic currents (thermohaline circulation) and sea-wind formation (where upward convection is also modified by Coriolis forces). In engineering applications, convection is commonly visualized in the formation of microstructures during the cooling of molten ...
Mantle convection. Simplified model of mantle convection: [1] Whole-mantle convection. Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2][3] Mantle convection causes tectonic plates to move around the Earth's surface. [4]
A hot, less-dense material at the bottom moves upwards, and likewise, cold material from the top moves downwards. Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined ...
This process creates convection currents in the outer core, which are thought to be the prime driver for the currents that create the Earth's magnetic field. [5] The existence of the inner core also affects the dynamic motions of liquid in the outer core, and thus may help fix the magnetic field. [citation needed]
The Earth's magnetic field is believed to be generated by electric currents in the conductive iron alloys of its core, created by convection currents due to heat escaping from the core. A schematic illustrating the relationship between motion of conducting fluid, organized into rolls by the Coriolis force, and the magnetic field the motion ...
Illustration of the dynamo mechanism that generates the Earth's magnetic field: convection currents of fluid metal in the Earth's outer core, driven by heat flow from the inner core, organized into rolls by the Coriolis force, generate circulating electric currents, which supports the magnetic field.
Atmospheric circulation. Atmospheric circulation is the large-scale movement of air and together with ocean circulation is the means by which thermal energy is redistributed on the surface of the Earth. The Earth's atmospheric circulation varies from year to year, but the large-scale structure of its circulation remains fairly constant.
A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. [1] Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example of convection, specifically atmospheric convection.