enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    The net magnetic moment of any system is a vector sum of contributions from one or both types of sources. For example, the magnetic moment of an atom of hydrogen-1 (the lightest hydrogen isotope, consisting of a proton and an electron) is a vector sum of the following contributions: the intrinsic moment of the electron,

  3. Electron magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Electron_magnetic_moment

    Electron magnetic moment. In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μe) is −9.284 764 6917(29) × 10−24 J⋅T−1. [1]

  4. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    The intrinsic magnetic moment μ of a spin-⁠ 1 / 2 ⁠ particle with charge q, mass m, and spin angular momentum S is [15] =, where the dimensionless quantity g s is called the spin g-factor. For exclusively orbital rotations, it would be 1 (assuming that the mass and the charge occupy spheres of equal radius). The electron, being a charged ...

  5. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    The unbalanced spin creates spin magnetic moment, making the electron act like a very small magnet. As the atoms pass through the in-homogeneous magnetic field, the force moment in the magnetic field influences the electron's dipole until its position matches the direction of the stronger field. The atom would then be pulled toward or away from ...

  6. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  7. Curie temperature - Wikipedia

    en.wikipedia.org/wiki/Curie_temperature

    Above the Curie temperature, the magnetic spins are randomly aligned in a paramagnet unless a magnetic field is applied. In physics and materials science, the Curie temperature (TC), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism.

  8. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    Nucleon magnetic moment. The nucleon magnetic moments are the intrinsic magnetic dipole moments of the proton and neutron, symbols μp and μn. The nucleus of an atom comprises protons and neutrons, both nucleons that behave as small magnets. Their magnetic strengths are measured by their magnetic moments. The nucleons interact with normal ...

  9. Magnetic susceptibility - Wikipedia

    en.wikipedia.org/wiki/Magnetic_susceptibility

    Magnetic susceptibility. Degree to which a material becomes magnetized in an applied magnetic field. In electromagnetism, the magnetic susceptibility (from Latin susceptibilis 'receptive'; denoted χ, chi) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization M (magnetic moment ...