Search results
Results from the WOW.Com Content Network
The density of an ideal gas is =, where M is the molar mass, P is the pressure, R is the universal gas constant, and T is the absolute temperature. This means that the density of an ideal gas can be doubled by doubling the pressure, or by halving the absolute temperature.
(Mass) Density (or volume density) ρ: Mass per unit volume kg/m 3: L −3 M: intensive Mean lifetime: τ: Average time for a particle of a substance to decay s T: intensive Molar concentration: C: Amount of substance per unit volume mol⋅m −3: L −3 N: intensive Molar energy: J/mol: Amount of energy present in a system per unit amount of ...
Name Standard symbol Definition Field of application Archimedes number: Ar = fluid mechanics (motion of fluids due to density differences) : Asakuma number: As = heat transfer (ratio of heat generation of microwave dielectric heating to thermal diffusion [6]
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured.
Normally, the effect of air buoyancy on objects of normal density is too small to be of any consequence in day-to-day activities. For instance, buoyancy's diminishing effect upon one's body weight (a relatively low-density object) is 1 ⁄ 860 that of gravity (for pure water it is about 1 ⁄ 770 that of gravity).
The density of water is approximately 1g/mL whether you consider a drop of water or a swimming pool, but the mass is different in the two cases. Dividing one extensive property by another extensive property generally gives an intensive value—for example: mass (extensive) divided by volume (extensive) gives density (intensive).
Rarefaction is the reduction of an item's density, the opposite of compression. [1] Like compression, which can travel in waves ( sound waves , for instance), rarefaction waves also exist in nature. A common rarefaction wave is the area of low relative pressure following a shock wave (see picture).
A United States Navy Aviation boatswain's mate tests the specific gravity of JP-5 fuel. Relative density, also called specific gravity, [1] [2] is a dimensionless quantity defined as the ratio of the density (mass of a unit volume) of a substance to the density of a given reference material.