Search results
Results from the WOW.Com Content Network
It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km (2 to 5 °F/1000 ft), as obtained from the International Civil Aviation Organization (ICAO). The environmental lapse rate is the decrease in temperature of air with altitude for a specific time and place (see below). It can be highly variable ...
If the air contains water vapor, then cooling of the air can cause the water to condense, and the air no longer functions as an ideal gas. If the air is at the saturation vapor pressure, then the rate at which temperature decreases with altitude is called the saturated adiabatic lapse rate.
This increase of temperature with altitude is characteristic of the stratosphere; its resistance to vertical mixing means that it is stratified. Within the stratosphere temperatures increase with altitude (see temperature inversion); the top of the stratosphere has a temperature of about 270 K (−3°C or 26.6°F). [9] [page needed]
The tropopause is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, provided that the average lapse-rate, between that level and all other higher levels within 2.0 km does not exceed 2°C/km. [1] The tropopause is a first-order discontinuity surface, in which temperature as a function of height varies ...
Comparison of the 1962 US Standard Atmosphere graph of geometric altitude against air density, pressure, the speed of sound and temperature with approximate altitudes of various objects. [1] Atmospheric temperature is a measure of temperature at different levels of the Earth's atmosphere.
In a completely moist troposphere, a temperature decrease with height less than 6 °C (11 °F) per kilometer ascent indicates stability, while greater changes indicate instability. In the range between 6 °C (11 °F) and 9.8 °C (17.6 °F) temperature decrease per kilometer ascent, the term conditionally unstable is used.
In meteorology, an inversion (or temperature inversion) is a phenomenon in which a layer of warmer air overlies cooler air. Normally, air temperature gradually decreases as altitude increases, but this relationship is reversed in an inversion.
Air pressure actually decreases exponentially with altitude, for altitudes up to around 70 km (43 mi; 230,000 ft), dropping by half every 5.6 km (18,000 ft), or by a factor of 1/e ≈ 0.368 every 7.64 km (25,100 ft), which is called the scale height. However, the atmosphere is more accurately modeled with a customized equation for each layer ...