enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bacterial growth - Wikipedia

    en.wikipedia.org/wiki/Bacterial_growth

    It is ideally spatially unstructured and temporally unstructured, in a steady state defined by the rates of nutrient supply and bacterial growth. In comparison to batch culture, bacteria are maintained in exponential growth phase, and the growth rate of the bacteria is known. Related devices include turbidostats and auxostats.

  3. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    For any fixed b not equal to 1 (e.g. e or 2), the growth rate is given by the non-zero time τ. For any non-zero time τ the growth rate is given by the dimensionless positive number b. Thus the law of exponential growth can be written in different but mathematically equivalent forms, by using a different base.

  4. Monod equation - Wikipedia

    en.wikipedia.org/wiki/Monod_equation

    The Monod equation is a mathematical model for the growth of microorganisms. It is named for Jacques Monod (1910–1976, a French biochemist, Nobel Prize in Physiology or Medicine in 1965), who proposed using an equation of this form to relate microbial growth rates in an aqueous environment to the concentration of a limiting nutrient.

  5. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    When calculating or discussing relative growth rate, it is important to pay attention to the units of time being considered. [ 2 ] For example, if an initial population of S 0 bacteria doubles every twenty minutes, then at time interval t {\displaystyle t} it is given by solving the equation:

  6. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Graph showing the exponential growth of three species of bacteria. Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually, like bacteria, exponential

  7. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    For example, with an annual growth rate of 4.8% the doubling time is 14.78 years, and a doubling time of 10 years corresponds to a growth rate between 7% and 7.5% (actually about 7.18%). When applied to the constant growth in consumption of a resource, the total amount consumed in one doubling period equals the total amount consumed in all ...

  8. Chemostat - Wikipedia

    en.wikipedia.org/wiki/Chemostat

    One of the most important features of chemostats is that microorganisms can be grown in a physiological steady state under constant environmental conditions. In this steady state, growth occurs at a constant specific growth rate and all culture parameters remain constant (culture volume, dissolved oxygen concentration, nutrient and product concentrations, pH, cell density, etc.).

  9. Growth curve (biology) - Wikipedia

    en.wikipedia.org/wiki/Growth_curve_(biology)

    Figure 1: A bi-phasic bacterial growth curve.. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves are widely used in biology for quantities such as population size or biomass (in population ecology and demography, for population growth analysis), individual body height or biomass (in physiology, for growth analysis of individuals).