Search results
Results from the WOW.Com Content Network
Time series. In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily ...
For example, time series are usually decomposed into: , the trend component at time t, which reflects the long-term progression of the series (secular variation). A trend exists when there is a persistent increasing or decreasing direction in the data. The trend component does not have to be linear. [1]
Two simulated time series processes, one stationary and the other non-stationary, are shown above. The augmented Dickey–Fuller (ADF) test statistic is reported for each process; non-stationarity cannot be rejected for the second process at a 5% significance level. White noise is the simplest example of a stationary process.
Moving-average model. In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1][2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century. Statistical graphics developed through attention to four problems: [3]
Fan chart (time series) In time series analysis, a fan chart is a chart that joins a simple line chart for observed past data, by showing ranges for possible values of future data together with a line showing a central estimate or most likely value for the future outcomes. As predictions become increasingly uncertain the further into the future ...
Correlogram. A plot showing 100 random numbers with a "hidden" sine function, and an autocorrelation (correlogram) of the series on the bottom. In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram.
Trend-stationary process. In the statistical analysis of time series, a trend-stationary process is a stochastic process from which an underlying trend (function solely of time) can be removed, leaving a stationary process. [1] The trend does not have to be linear.