Ads
related to: cramer's rule 2x2 examples free template download for cvresumegenius.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...
Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3 , it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.
To describe a set with an infinite number of solutions, typically some of the variables are designated as free (or independent, or as parameters), meaning that they are allowed to take any value, while the remaining variables are dependent on the values of the free variables. For example, consider the following system:
The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).
Cramer's rule on the other hand needs to make no decisions at all (all that matters is that the denominator is nonzero, which is the condition for a unique solution to exist in the first place) and can be applied to such a system. That is exactly why the rule is of theoretical importance.
This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3 × 3 matrix in the example above has rank two. [9] The rank of a matrix is also equal to the dimension of the column space.
Ads
related to: cramer's rule 2x2 examples free template download for cvresumegenius.com has been visited by 10K+ users in the past month