Search results
Results from the WOW.Com Content Network
A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science.
In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q". For example, the Pythagorean theorem can be stated as:
Information diagrams have also been applied to specific problems such as for displaying the information theoretic similarity between sets of ontological terms. [ 3 ] Venn diagram showing additive and subtractive relationships among various information measures associated with correlated variables X and Y .
The mutual information is used in cosmology to test the influence of large-scale environments on galaxy properties in the Galaxy Zoo. The mutual information was used in Solar Physics to derive the solar differential rotation profile, a travel-time deviation map for sunspots, and a time–distance diagram from quiet-Sun measurements [38]
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
Venn diagrams are a more restrictive form of Euler diagrams. A Venn diagram must contain all 2 n logically possible zones of overlap between its n curves, representing all combinations of inclusion/exclusion of its constituent sets. Regions not part of the set are indicated by coloring them black, in contrast to Euler diagrams, where membership ...
These diagrams depict elements as points in the plane, and sets as regions inside closed curves. A Venn diagram consists of multiple overlapping closed curves, usually circles, each representing a set. The points inside a curve labelled S represent elements of the set S, while points outside the boundary represent elements not in the set S.
If A and B are sets and every element of A is also an element of B, then: . A is a subset of B, denoted by , or equivalently,; B is a superset of A, denoted by .; If A is a subset of B, but A is not equal to B (i.e. there exists at least one element of B which is not an element of A), then: