Search results
Results from the WOW.Com Content Network
Andreev reflection, named after the Russian physicist Alexander F. Andreev, is a type of particle scattering which occurs at interfaces between a superconductor (S) and a normal state material (N). It is a charge-transfer process by which normal current in N is converted to supercurrent in S.
Diagram of Andreev reflection. An electron meeting the interface between a normal conductor and a superconductor produces a Cooper pair in the superconductor and a retroreflected electron hole in the normal conductor. Legend: "N" = normal conductor, "S" = superconductor, red = electron, green = hole. Arrows indicate the spin band occupied by ...
Vortices in a 200-nm-thick YBCO film imaged by scanning SQUID microscopy [1]. In superconductivity, a fluxon (also called an Abrikosov vortex or quantum vortex) is a vortex of supercurrent in a type-II superconductor, used by Soviet physicist Alexei Abrikosov to explain magnetic behavior of type-II superconductors. [2]
The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
Alexander Fyodorovich Andreev (Russian: Александр Фёдорович Андреев, 10 December 1939 – 14 March 2023) [1] was a Russian theoretical physicist best known for explaining the eponymous Andreev reflection. [2] Andreev was educated at the Moscow Institute of Physics and Technology, starting in 1959 and graduating ahead of ...
A room-temperature superconductor is a hypothetical material capable of displaying superconductivity above 0 °C (273 K; 32 °F), operating temperatures which are commonly encountered in everyday settings.
The tendency for all the Cooper pairs in a body to "condense" into the same ground quantum state is responsible for the peculiar properties of superconductivity.Cooper originally considered only the case of an isolated pair's formation in a metal.
Design was theoretically described in 1997 by Shnirman, [11] while the evidence of quantum coherence of the charge in a Cooper pair box was published in February 1997 by Vincent Bouchiat et al. [12] In 1999, coherent oscillations in the charge Qubit were first observed by Nakamura et al. [13] Manipulation of the quantum states and full ...