enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Protease - Wikipedia

    en.wikipedia.org/wiki/Protease

    Ribbon diagram of a protease (TEV protease) complexed with its peptide substrate in black with catalytic residues in red.(. A protease (also called a peptidase, proteinase, or proteolytic enzyme) [1] is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. [2]

  3. The Proteolysis Map - Wikipedia

    en.wikipedia.org/wiki/The_Proteolysis_Map

    Proteases are a class of enzymes that regulate much of what happens in the human body, both inside the cell and out, by cleaving peptide bonds in proteins.Through this activity, they govern the four essential cell functions: differentiation, motility, division and cell death — and activate important extracellular episodes, such as the biochemical cascade effect in blood clotting.

  4. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site. Although the active site occupies only ~10–20% of the volume of an enzyme, [ 1 ] : 19 it is the most important part as it directly catalyzes the chemical ...

  5. Proteolysis - Wikipedia

    en.wikipedia.org/wiki/Proteolysis

    Proteases in particular are synthesized in the inactive form so that they may be safely stored in cells, and ready for release in sufficient quantity when required. This is to ensure that the protease is activated only in the correct location or context, as inappropriate activation of these proteases can be very destructive for an organism.

  6. Aspartic protease - Wikipedia

    en.wikipedia.org/wiki/Aspartic_protease

    Aspartic proteases (also "aspartyl proteases", "aspartic endopeptidases") are a catalytic type of protease enzymes that use an activated water molecule bound to one or more aspartate residues for catalysis of their peptide substrates. In general, they have two highly conserved aspartates in the active site and are optimally active at acidic pH.

  7. Catalytic triad - Wikipedia

    en.wikipedia.org/wiki/Catalytic_triad

    The structure of chymotrypsin was solved by X-ray crystallography in the 1960s, showing the orientation of the catalytic triad in the active site. [8] Other proteases were sequenced and aligned to reveal a family of related proteases, [9] [10] [11] now called the S1 family.

  8. Proteasome - Wikipedia

    en.wikipedia.org/wiki/Proteasome

    The molecule ritonavir, marketed as Norvir, was developed as a protease inhibitor and used to target HIV infection. However, it has been shown to inhibit proteasomes as well as free proteases; to be specific, the chymotrypsin-like activity of the proteasome is inhibited by ritonavir, while the trypsin-like activity is somewhat enhanced. [113]

  9. Intramembrane protease - Wikipedia

    en.wikipedia.org/wiki/Intramembrane_protease

    There are four groups of intramembrane proteases, distinguished by their catalytic mechanism: [5]. Metalloproteases: Site-2 protease (S2P) and S2P-like proteases [9]; Aspartyl proteases: this group includes presenilin, the active subunit of gamma secretase [10] [11] and signal peptide peptidases (SPPs) and SPP-like proteases, which are distantly related to presenilin but have opposite membrane ...