Search results
Results from the WOW.Com Content Network
The Burgers vector will be the vector to complete the circuit, i.e., from the start to the end of the circuit. [2] One can also use a counterclockwise Burgers circuit from a starting point to enclose the dislocation. The Burgers vector will instead be from the end to the start of the circuit (see picture above). [3]
A vector made from two Roman letters describes the Burgers vector of a perfect dislocation. If the vector is made from a Roman letter and a Greek letter, then it is a Frank partial if the letters are corresponding (Aα, Bβ,...) or a Shockley partial otherwise (Aβ, Aγ,...). Vectors made from two Greek letters describe stair-rod dislocations.
Lattice configuration of the slip plane in a bcc material. The arrow represents the Burgers vector in this dislocation glide system. Slip in body-centered cubic (bcc) crystals occurs along the plane of shortest Burgers vector as well; however, unlike fcc, there are no truly close-packed planes in the bcc crystal structure. Thus, a slip system ...
Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation and convection–diffusion equation [1] occurring in various areas of applied mathematics, such as fluid mechanics, [2] nonlinear acoustics, [3] gas dynamics, and traffic flow. [4]
The screw component of a mixed dislocation loop can move to another slip plane, called the cross-slip plane. Here the Burgers vector is along the intersection of the planes. In materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of ...
When the two leading Shockley partials combine, they form a separate dislocation with a burgers vector that is not in the slip plane. This is the Lomer–Cottrell dislocation. This is the Lomer–Cottrell dislocation.
The ensemble Kalman filter (EnKF) is a Monte Carlo implementation of the Bayesian update problem: given a probability density function (PDF) of the state of the modeled system (the prior, called often the forecast in geosciences) and the data likelihood, Bayes' theorem is used to obtain the PDF after the data likelihood has been taken into account (the posterior, often called the analysis).
One of the important property of the Burgers vortex that was shown by Jan Burgers is that the total viscous dissipation rate per unit axial length is independent of the viscosity, indicating that dissipation by the Burgers vortex is non-zero even in the limit . For this reason, it serves as a suitable candidate in modelling and understanding ...