enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ultra-high temperature ceramic - Wikipedia

    en.wikipedia.org/wiki/Ultra-high_temperature_ceramic

    Ultra-high-temperature ceramics (UHTCs) are a type of refractory ceramics that can withstand extremely high temperatures without degrading, often above 2,000 °C. [1] They also often have high thermal conductivities and are highly resistant to thermal shock, meaning they can withstand sudden and extreme changes in temperature without cracking or breaking.

  3. Thermal shock - Wikipedia

    en.wikipedia.org/wiki/Thermal_shock

    Thermal shock resistance measures can be used for material selection in applications subject to rapid temperature changes. The maximum temperature jump, , sustainable by a material can be defined for strength-controlled models by: [4] [3] = where is the failure stress (which can be yield or fracture stress), is the coefficient of thermal expansion, is the Young's modulus, and is a constant ...

  4. Ultra-high temperature ceramic matrix composite - Wikipedia

    en.wikipedia.org/wiki/Ultra-high_temperature...

    On the other side bulk ceramics made of ultra-high temperature ceramics (e.g. ZrB 2, HfB 2, or their composites) are hard materials which show low erosion even above 2000 °C but are heavy and suffer of catastrophic fracture and low thermal shock resistance compared to CMCs.

  5. Thermal stress - Wikipedia

    en.wikipedia.org/wiki/Thermal_stress

    Material will expand or contract depending on the material's thermal expansion coefficient. As long as the material is free to move, the material can expand or contract freely without generating stresses. Once this material is attached to a rigid body at multiple locations, thermal stresses can be created in the geometrically constrained region.

  6. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.

  7. Mineral wool - Wikipedia

    en.wikipedia.org/wiki/Mineral_wool

    High bio soluble fibers are produced that do not cause damage to the human cell. These newer materials have been tested for carcinogenicity and most are found to be noncarcinogenic. IARC elected not to make an overall evaluation of the newly developed fibers designed to be less bio persistent such as the alkaline earth silicate or high-alumina ...

  8. 2,2',3,3',4,4'-Hexachlorobiphenyl - Wikipedia

    en.wikipedia.org/wiki/2,2',3,3',4,4...

    While most PCBs are considered fire-resistant due to their high flashpoint (170-380 °C), 2,2’,3,3’,4,4’-hexachlorobiphenyl has a lower flash point of 141 °C. Most PCBs have high thermal conductivity and high resistance, which is the reason they were used in electrical equipment. [13]

  9. Oxide dispersion-strengthened alloy - Wikipedia

    en.wikipedia.org/wiki/Oxide_dispersion...

    This oxide layer is stable and has a high emission coefficient. Allows the design of thin-walled structures (sandwich). Resistant to harsh weather conditions in the troposphere. Low maintenance cost. Low material cost. Disadvantages: It has a higher expansion coefficient than other materials, causing higher thermal stresses. Higher density.