enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron can be seen as a degenerate limiting case of a pyritohedron, with permutation of coordinates (±1, ±1, ±1) and (0, 1 + h, 1 − h 2) with parameter h = 1. These coordinates illustrate that a rhombic dodecahedron can be seen as a cube with six square pyramids attached to each face, allowing them to fit together into a ...

  3. First stellation of the rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/First_stellation_of_the...

    In geometry, the first stellation of the rhombic dodecahedron is a self-intersecting polyhedron with 12 faces, each of which is a non-convex hexagon. It is a stellation of the rhombic dodecahedron and has the same outer shell and the same visual appearance as two other shapes: a solid, Escher's solid, with 48 triangular faces, and a polyhedral compound of three flattened octahedra with 24 ...

  4. List of polyhedral stellations - Wikipedia

    en.wikipedia.org/wiki/List_of_polyhedral_stellations

    Rhombic triacontahedron: Compound of great icosahedron and great stellated dodecahedron: Icosidodecahedron: Compound of great icosahedron and great stellated dodecahedron: Great icosidodecahedron: Compound of dodecahedron and icosahedron: Icosidodecahedron: Compound of cube and octahedron: Cuboctahedron: Second stellation of the cuboctahedron ...

  5. Compound of five cubes - Wikipedia

    en.wikipedia.org/wiki/Compound_of_five_cubes

    Model of the compound in a dodecahedron. The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876. It is one of five regular compounds, and dual to the compound of five octahedra. It can be seen as a faceting of a regular dodecahedron. It is one of the stellations of the rhombic ...

  6. Stellation - Wikipedia

    en.wikipedia.org/wiki/Stellation

    Here we usually add the rule that all of the original face planes must be present in the stellation, i.e. we do not consider partial stellations. For example the cube is not usually considered a stellation of the cuboctahedron. Generalising Miller's rules there are: 4 stellations of the rhombic dodecahedron; 187 stellations of the triakis ...

  7. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    (Second compound stellation of icosahedron) I 25 Compound of ten tetrahedra (Third compound stellation of icosahedron) I h: 26 Small triambic icosahedron (First stellation of icosahedron) (Triakis icosahedron) I h: 27 Second stellation of icosahedron: I h: 28 Excavated dodecahedron (Third stellation of icosahedron) I h: 29 Fourth stellation of ...

  8. Stellation diagram - Wikipedia

    en.wikipedia.org/wiki/Stellation_diagram

    The stellation diagram for the regular dodecahedron with the central pentagon highlighted. This diagram represents the dodecahedron face itself. In geometry, a stellation diagram or stellation pattern is a two-dimensional diagram in the plane of some face of a polyhedron, showing lines where other face planes intersect with this one.

  9. Rhombic dodecahedral honeycomb - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedral_honeycomb

    The vertices with the obtuse rhombic face angles have 4 cells. The vertices with the acute rhombic face angles have 6 cells. The rhombic dodecahedron can be twisted on one of its hexagonal cross-sections to form a trapezo-rhombic dodecahedron, which is the cell of a somewhat similar tessellation, the Voronoi diagram of hexagonal close-packing.