enow.com Web Search

  1. Ads

    related to: linear algebra involution function examples free download templates technology design

Search results

  1. Results from the WOW.Com Content Network
  2. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : X → X that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  3. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    An involution is non-defective, and each eigenvalue equals , so an involution diagonalizes to a signature matrix. A normal involution is Hermitian (complex) or symmetric (real) and also unitary (complex) or orthogonal (real). The determinant of an involutory matrix over any field is ±1. [4]

  4. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    If A represents a linear involution, then x→A(x−b)+b is an affine involution. One can check that any affine involution in fact has this form. Geometrically this means that any affine involution can be obtained by taking oblique reflections against any number from 0 through n hyperplanes going through a point b.

  5. Dagger category - Wikipedia

    en.wikipedia.org/wiki/Dagger_category

    In this example, a self-adjoint morphism is a symmetric relation. The category Cob of cobordisms is a dagger compact category , in particular it possesses a dagger structure. The category Hilb of Hilbert spaces also possesses a dagger structure: Given a bounded linear map f : A → B {\displaystyle f:A\rightarrow B} , the map f † : B → A ...

  6. Mathematical methods in electronics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_methods_in...

    Mathematical Methods in Electronics Engineering involves applying mathematical principles to analyze, design, and optimize electronic circuits and systems. Key areas include: [1] [2] Linear Algebra: Used to solve systems of linear equations that arise in circuit analysis. Applications include network theory and the analysis of electrical ...

  7. Expression templates - Wikipedia

    en.wikipedia.org/wiki/Expression_templates

    Expression templates have been found especially useful by the authors of libraries for linear algebra, that is, for dealing with vectors and matrices of numbers. Among libraries employing expression template are Dlib , Armadillo , Blaze , [ 5 ] Blitz++ , [ 6 ] Boost uBLAS, [ 7 ] Eigen , [ 8 ] POOMA, [ 9 ] Stan Math Library , [ 10 ] and xtensor ...

  8. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  9. Template:Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Template:Linear_algebra

    To change this template's initial visibility, the |state= parameter may be used: {{Linear algebra | state = collapsed}} will show the template collapsed, i.e. hidden apart from its title bar. {{Linear algebra | state = expanded}} will show the template expanded, i.e. fully visible.

  1. Ads

    related to: linear algebra involution function examples free download templates technology design