Search results
Results from the WOW.Com Content Network
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
In computer science, the minimum routing cost spanning tree of a weighted graph is a spanning tree minimizing the sum of pairwise distances between vertices in the tree. It is also called the optimum distance spanning tree, shortest total path length spanning tree, minimum total distance spanning tree, or minimum average distance spanning tree.
Construct the shortest-path tree using the edges between each node and its parent. The above algorithm guarantees the existence of shortest-path trees. Like minimum spanning trees, shortest-path trees in general are not unique. In graphs for which all edge weights are equal, shortest path trees coincide with breadth-first search trees.
Compared to Dijkstra's algorithm, the A* algorithm only finds the shortest path from a specified source to a specified goal, and not the shortest-path tree from a specified source to all possible goals. This is a necessary trade-off for using a specific-goal-directed heuristic. For Dijkstra's algorithm, since the entire shortest-path tree is ...
The depth of a vertex is the length of the path to its root (root path). The depth of a tree is the maximum depth of any vertex. Depth is commonly needed in the manipulation of the various self-balancing trees, AVL trees in particular. The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and ...
If is edge-unweighted every spanning tree possesses the same number of edges and thus the same weight. In the edge-weighted case, the spanning tree, the sum of the weights of the edges of which is lowest among all spanning trees of , is called a minimum spanning tree (MST). It is not necessarily unique.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
The output is a tree with k vertices and k − 1 edges, with all of the edges of the output tree belonging to the input graph. The cost of the output is the sum of the weights of its edges, and the goal is to find the tree that has minimum cost. The problem was formulated by Lozovanu & Zelikovsky (1993) [1] and by Ravi et al. (1996).