enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bellard's formula - Wikipedia

    en.wikipedia.org/wiki/Bellard's_formula

    Bellard's formula is used to calculate the nth digit of π in base 16. Bellard's formula was discovered by Fabrice Bellard in 1997. It is about 43% faster than the Bailey–Borwein–Plouffe formula (discovered in 1995). [1] [2] It has been used in PiHex, the now-completed distributed computing project.

  3. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    Using the P function mentioned above, the simplest known formula for π is for s = 1, but m > 1. Many now-discovered formulae are known for b as an exponent of 2 or 3 and m as an exponent of 2 or it some other factor-rich value, but where several of the terms of sequence A are zero. The discovery of these formulae involves a computer search for ...

  4. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_algorithm

    The version presented below is also known as the Gauss–Euler, Brent–Salamin (or Salamin–Brent) algorithm; [1] it was independently discovered in 1975 by Richard Brent and Eugene Salamin. It was used to compute the first 206,158,430,000 decimal digits of π on September 18 to 20, 1999, and the results were checked with Borwein's algorithm.

  5. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    In other words, the n th digit of this number is 1 only if n is one of 1! = 1, 2! = 2, 3! = 6, 4! = 24, etc. Liouville showed that this number belongs to a class of transcendental numbers that can be more closely approximated by rational numbers than can any irrational algebraic number, and this class of numbers is called the Liouville numbers ...

  6. Simon Plouffe - Wikipedia

    en.wikipedia.org/wiki/Simon_Plouffe

    Simon Plouffe (born June 11, 1956) is a French Canadian mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the nth binary digit of π, in 1995. [1] [2] [3] His other 2022 formula allows extracting the nth digit of π in decimal. [4] He was born in Saint-Jovite, Quebec.

  7. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    It was used in the world record calculations of 2.7 trillion digits of π in December 2009, [3] 10 trillion digits in October 2011, [4] [5] 22.4 trillion digits in November 2016, [6] 31.4 trillion digits in September 2018–January 2019, [7] 50 trillion digits on January 29, 2020, [8] 62.8 trillion digits on August 14, 2021, [9] 100 trillion ...

  8. Spigot algorithm - Wikipedia

    en.wikipedia.org/wiki/Spigot_algorithm

    A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...

  9. Chronology of computation of π - Wikipedia

    en.wikipedia.org/wiki/Chronology_of_computation...

    Computation: 4× Intel Xeon CPU E7-4880 v2 @ 2.5 GHz (60 cores, 320 GB DDR3-1066 RAM) Storage: 406.5 TB – 48× 6 TB HDDs (Computation) + 47× LTO Ultrium 5 1.5 TB Tapes (Checkpoint Backups) + 12× 4 TB HDDs (Digit Storage) Ubuntu 18.10 (x64) Verification: 17 hours using Bellard's 7-term formula, 24 hours using Plouffe's 4-term formula; 303 days