Search results
Results from the WOW.Com Content Network
A smaller ion with stronger hydration, for example, may have a greater Stokes radius than a larger ion with weaker hydration. This is because the smaller ion drags a greater number of water molecules with it as it moves through the solution. [1] Stokes radius is sometimes used synonymously with effective hydrated radius in solution. [2]
In applied sciences, the equivalent radius (or mean radius) is the radius of a circle or sphere with the same perimeter, area, or volume of a non-circular or non-spherical object. The equivalent diameter (or mean diameter ) ( D {\displaystyle D} ) is twice the equivalent radius.
The van der Waals radius, r w, of an atom is the radius of an imaginary hard sphere representing the distance of closest approach for another atom. It is named after Johannes Diderik van der Waals, winner of the 1910 Nobel Prize in Physics, as he was the first to recognise that atoms were not simply points and to demonstrate the physical consequences of their size through the van der Waals ...
The Wigner–Seitz radius, named after Eugene Wigner and Frederick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first group metals). [1] In the more general case of metals having more valence electrons, r s {\\displaystyle r_{\\rm {s}}} is the radius of a sphere whose volume is equal to the ...
Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities
The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation:
The mobility of non-spherical aerosol particles can be described by the hydrodynamic radius. In the continuum limit, where the mean free path of the particle is negligible compared to a characteristic length scale of the particle, the hydrodynamic radius is defined as the radius that gives the same magnitude of the frictional force, as that of a sphere with that radius, i.e.
where A is the area of a squircle with minor radius r, is the gamma function. A = ( k + 1 ) ( k + 2 ) π r 2 {\displaystyle A=(k+1)(k+2)\pi r^{2}} where A is the area of an epicycloid with the smaller circle of radius r and the larger circle of radius kr ( k ∈ N {\displaystyle k\in \mathbb {N} } ), assuming the initial point lies on the ...