enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]

  3. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = () ...

  4. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The symmetric difference quotient is employed as the method of approximating the derivative in a number of calculators, including TI-82, TI-83, TI-84, TI-85, all of which use this method with h = 0.001. [2] [3]

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The difference rule ) ... The quotient rule If f and g are ... Derivative calculator with formula simplification This page was last ...

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    The finite difference of higher orders can be defined in recursive manner as Δ n h ≡ Δ h (Δ n − 1 h) . Another equivalent definition is Δ n h ≡ [T h − I ] n . The difference operator Δ h is a linear operator, as such it satisfies Δ h [ α f + β g ](x) = α Δ h [ f ](x) + β Δ h [g](x) . It also satisfies a special Leibniz rule:

  7. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    Commonly expressed today as Force = Mass × Acceleration, it invokes discrete calculus when the change is incremental because acceleration is the difference quotient of velocity with respect to time or second difference quotient of the spatial position.

  8. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    These techniques include the chain rule, product rule, and quotient rule. Other functions cannot be differentiated at all, giving rise to the concept of differentiability. A closely related concept to the derivative of a function is its differential.