Search results
Results from the WOW.Com Content Network
Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]
In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = () ...
The symmetric difference quotient is employed as the method of approximating the derivative in a number of calculators, including TI-82, TI-83, TI-84, TI-85, all of which use this method with h = 0.001. [2] [3]
The difference rule ) ... The quotient rule If f and g are ... Derivative calculator with formula simplification This page was last ...
The finite difference of higher orders can be defined in recursive manner as Δ n h ≡ Δ h (Δ n − 1 h) . Another equivalent definition is Δ n h ≡ [T h − I ] n . The difference operator Δ h is a linear operator, as such it satisfies Δ h [ α f + β g ](x) = α Δ h [ f ](x) + β Δ h [g](x) . It also satisfies a special Leibniz rule:
Commonly expressed today as Force = Mass × Acceleration, it invokes discrete calculus when the change is incremental because acceleration is the difference quotient of velocity with respect to time or second difference quotient of the spatial position.
All derivatives of circular trigonometric functions can be found from those of sin(x) and cos(x) by means of the quotient rule applied to functions such as tan(x) = sin(x)/cos(x). Knowing these derivatives, the derivatives of the inverse trigonometric functions are found using implicit differentiation.
These techniques include the chain rule, product rule, and quotient rule. Other functions cannot be differentiated at all, giving rise to the concept of differentiability. A closely related concept to the derivative of a function is its differential.