Search results
Results from the WOW.Com Content Network
A scar (or scar tissue) is an area of fibrous tissue that replaces normal skin after an injury. Scars result from the biological process of wound repair in the skin, as well as in other organs , and tissues of the body.
This process of tissue repair is a complex one, with tight regulation of extracellular matrix (ECM) synthesis and degradation ensuring maintenance of normal tissue architecture. However, the entire process, although necessary, can lead to a progressive irreversible fibrotic response if tissue injury is severe or repetitive, or if the wound ...
Scar free healing is the process by which significant injuries can heal without permanent damage to the tissue the injury has affected. In most healing, scars form due to the fibrosis and wound contraction, however in scar free healing, tissue is completely regenerated. During the 1990s, published research on the subject increased; it is a ...
Timing is important to wound healing. Critically, the timing of wound re-epithelialization can decide the outcome of the healing. [11] If the epithelization of tissue over a denuded area is slow, a scar will form over many weeks, or months; [12] [13] If the epithelization of a wounded area is fast, the healing will result in regeneration.
The replacement can happen in two ways: by regeneration in which the necrotic cells are replaced by new cells that form "like" tissue as was originally there; or by repair in which injured tissue is replaced with scar tissue. Most organs will heal using a mixture of both mechanisms. [1]
Damaged sweat and sebaceous glands, hair follicles, muscle cells, and nerves are seldom repaired. They are usually replaced by the fibrous tissue. The result is the formation of an inflexible, fibrous scar tissue. Human skin cells are capable of repairing UV-induced DNA damages by the process of nucleotide excision repair. [2]
In 2013, it was proven in pig tissue that full thickness micro columns of tissue, less than 0.5mm in diameter could be removed and that the replacement tissue, was regenerative tissue, not scar. The tissue was removed in a fractional pattern, with over 40% of a square area removed; and all of the fractional full thickness holes in the square ...
The process of muscle regeneration involves considerable remodeling of extracellular matrix and, where extensive damage occurs, is incomplete. Fibroblasts within the muscle deposit scar tissue, which can impair muscle function, and is a significant part of the pathology of muscular dystrophies.