Search results
Results from the WOW.Com Content Network
Phase-contrast microscopy is particularly important in biology. It reveals many cellular structures that are invisible with a bright-field microscope, as exemplified in the figure. These structures were made visible to earlier microscopists by staining, but this required additional preparation and death of the cells. The phase-contrast ...
As living cells are translucent, they must be stained to be visible in a traditional light microscope. Unfortunately, the process of staining cells generally kills them. With the invention of the phase-contrast microscopy it became possible to observe unstained living cells in detail. After its introduction in the 1940s, live-cell imaging ...
In the field of transmission electron microscopy, phase-contrast imaging may be employed to image columns of individual atoms; a more common name is high-resolution transmission electron microscopy. It is the highest resolution imaging technique ever developed, and can allow for resolutions of less than one angstrom (less than 0.1 nanometres).
Quantitative phase contrast microscopy or quantitative phase imaging are the collective names for a group of microscopy methods that quantify the phase shift that occurs when light waves pass through a more optically dense object. [1] [2] Translucent objects, like a living human cell, absorb and scatter small amounts of light.
In other words, phase contrast is a contrast-enhancing optical technique that can be used to produce high contrast images such as living cells and subcellular including nuclei and other organelles. One of the major advantages of using phase contrast microscopy is that living cells can be examined in their natural state without being killed ...
Dark-field microscopy produces an image with a dark background Operating principles of dark-field and phase-contrast microscopies Dark-field microscopy is a very simple yet effective technique and well suited for uses involving live and unstained biological samples, such as a smear from a tissue culture or individual, water-borne, single-celled ...
Time-lapse microscopy can be used to observe any microscopic object over time. However, its main use is within cell biology to observe artificially cultured cells. Depending on the cell culture, different microscopy techniques can be applied to enhance characteristics of the cells as most cells are transparent. [1]
In systems biology, live single-cell imaging is a live-cell imaging technique that combines traditional live-cell imaging and time-lapse microscopy techniques with automated cell tracking and feature extraction, drawing many techniques from high-content screening. It is used to study signalling dynamics and behaviour in populations of ...