Search results
Results from the WOW.Com Content Network
Most liquids freeze by crystallization, formation of crystalline solid from the uniform liquid. This is a first-order thermodynamic phase transition, which means that as long as solid and liquid coexist, the temperature of the whole system remains very nearly equal to the melting point due to the slow removal of heat when in contact with air, which is a poor heat conductor.
The solidus is the locus of temperatures (a curve on a phase diagram) below which a given substance is completely solid (crystallized). The solidus temperature specifies the temperature below which a material is completely solid, [2] and the minimum temperature at which a melt can co-exist with crystals in thermodynamic equilibrium.
A small piece of rapidly melting solid argon shows two concurrent phase changes. The transition from solid to liquid, and gas to liquid (shown by the white condensed water vapour). Other phase changes include: Transition to a mesophase between solid and liquid, such as one of the "liquid crystal" phases.
A vapor can exist in equilibrium with a liquid (or solid), in which case the gas pressure equals the vapor pressure of the liquid (or solid). A supercritical fluid (SCF) is a gas whose temperature and pressure are above the critical temperature and critical pressure respectively. In this state, the distinction between liquid and gas disappears.
A typical phase diagram for a single-component material, exhibiting solid, liquid and gaseous phases. The solid green line shows the usual shape of the liquid–solid phase line. The dotted green line shows the anomalous behavior of water when the pressure increases. The triple point and the critical point are shown as red dots.
In thermal equilibrium, each phase (i.e. liquid, solid etc.) of physical matter comes to an end at a transitional point, or spatial interface, called a phase boundary, due to the immiscibility of the matter with the matter on the other side of the boundary. This immiscibility is due to at least one difference between the two substances ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The frozen solid phase subsequently has a different composition than the remaining liquid. This is the fundamental physical principle behind the melt fractionating process and quite comparable to distillation, which operates between a liquid and the gas phase. The crystals will grow on a cooled surface or alternatively as a suspension in the ...