enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Resolution (chromatography) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(chromatography)

    Chromatographic peak resolution is given by = + where t R is the retention time and w b is the peak width at baseline. The bigger the time-difference and/or the smaller the bandwidths, the better the resolution of the compounds. Here compound 1 elutes before compound 2.

  3. Fundamental resolution equation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_Resolution...

    3) Changing α is the most effective way of increasing resolution. This can be done by choosing a stationary phase that has a greater difference between k 1 ' and k 2 '. It can also be done in L.C. by using pH to invoke secondary equilibria (if applicable). The fundamental resolution equation is derived as follows:

  4. Purnell equation - Wikipedia

    en.wikipedia.org/wiki/Purnell_equation

    The Purnell equation is an equation used in analytical chemistry to calculate the resolution R s between two peaks in a chromatogram. [1] [2]= (′ + ′) where R s is the resolution between the two peaks

  5. Resolution (mass spectrometry) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(mass_spectrometry)

    A high value for resolution corresponding to good separation of peaks is similar to the convention used with chromatography separations, [13] although it is important to note that the definitions are not the same. [14] High resolution indicating better peak separation is also used in ion mobility spectrometry. [15]

  6. High-performance liquid chromatography - Wikipedia

    en.wikipedia.org/wiki/High-performance_liquid...

    The greater the separation factor value is over 1.0, the better the separation, until about 2.0 beyond which an HPLC method is probably not needed for separation. Resolution equations relate the three factors such that high efficiency and separation factors improve the resolution of component peaks in an HPLC separation.

  7. Time-resolved spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Time-resolved_spectroscopy

    In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.

  8. Response factor - Wikipedia

    en.wikipedia.org/wiki/Response_factor

    The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]

  9. Van Deemter equation - Wikipedia

    en.wikipedia.org/wiki/Van_Deemter_equation

    In liquid chromatography, the mobile phase velocity is taken as the exit velocity, that is, the ratio of the flow rate in ml/second to the cross-sectional area of the ‘column-exit flow path.’ For a packed column, the cross-sectional area of the column exit flow path is usually taken as 0.6 times the cross-sectional area of the column.