Search results
Results from the WOW.Com Content Network
A right trapezoid (also called right-angled trapezoid) has two adjacent right angles. [13] Right trapezoids are used in the trapezoidal rule for estimating areas under a curve. An acute trapezoid has two adjacent acute angles on its longer base edge. An obtuse trapezoid on the other hand has one acute and one obtuse angle on each base.
The median (midsegment) of a tangential trapezoid equals one fourth of the perimeter of the trapezoid. It also equals half the sum of the bases, as in all trapezoids. If two circles are drawn, each with a diameter coinciding with the legs of a tangential trapezoid, then these two circles are tangent to each other. [5]
The term wetted perimeter is common in civil engineering, environmental engineering, hydrology, geomorphology, and heat transfer applications; it is associated with the hydraulic diameter or hydraulic radius. Engineers commonly cite the cross sectional area of a river. The wetted perimeter can be defined mathematically as
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
Tangential trapezoid: a trapezoid where the four sides are tangents to an inscribed circle. Cyclic quadrilateral: the four vertices lie on a circumscribed circle. A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral.
P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon by shear stress from the fluid. [3]
Both of these lines divide the perimeter of the quadrilateral into two equal parts. More importantly, the Nagel point N, the "area centroid" G, and the incenter I are collinear in this order, and NG = 2GI. This line is called the Nagel line of a tangential quadrilateral. [21]