Search results
Results from the WOW.Com Content Network
A state diagram for a door that can only be opened and closed. A state diagram is used in computer science and related fields to describe the behavior of systems. State diagrams require that the system is composed of a finite number of states. Sometimes, this is indeed the case, while at other times this is a reasonable abstraction.
The state diagram from Figure 2 is an example of an extended state machine, in which the complete condition of the system (called the extended state) is the combination of a qualitative aspect—the state variable—and the quantitative aspects—the extended state variables. The obvious advantage of extended state machines is flexibility.
An ASM state, represented as a rectangle, corresponds to one state of a regular state diagram or finite-state machine. The Moore type outputs are listed inside the box. State Name. State Name: The name of the state is indicated inside the circle and the circle is placed in the top left corner or the name is placed without the circle. State box
"Direction" of a state transition is shown by an arrow. The label (e.g.. 0/P,R) near the outgoing state (at the "tail" of the arrow) specifies the scanned symbol that causes a particular transition (e.g. 0) followed by a slash /, followed by the subsequent "behaviors" of the machine, e.g. "P Print" then move tape "R Right".
It is possible to draw a state diagram from a state-transition table. A sequence of easy to follow steps is given below: Draw the circles to represent the states given. For each of the states, scan across the corresponding row and draw an arrow to the destination state(s).
UML Diagrams used to represent the development view include the Package diagram and the Component diagram. [2] Physical view: The physical view (aka the deployment view) depicts the system from a system engineer's point of view. It is concerned with the topology of software components on the physical layer as well as the physical connections ...
To investigate the possible state/input/output sequences in an automaton using formal language theory, a machine can be assigned a starting state and a set of accepting states. Then, depending on whether a run starting from the starting state ends in an accepting state, the automaton can be said to accept or reject an input sequence.
SCXML stands for State Chart XML: State Machine Notation for Control Abstraction. It is an XML-based markup language that provides a generic state-machine-based execution environment based on Harel statecharts. SCXML is able to describe complex finite-state machines. For example, it is possible to describe notations such as sub-states, parallel ...