Search results
Results from the WOW.Com Content Network
Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.
This process of top-down induction of decision trees (TDIDT) [5] is an example of a greedy algorithm, and it is by far the most common strategy for learning decision trees from data. [ 6 ] In data mining , decision trees can be described also as the combination of mathematical and computational techniques to aid the description, categorization ...
Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...
It is formed by oxidation of TNT and nitric acid with chlorate [2] and with dichromate. [3] Upon heating, 2,4,6-trinitrobenzoic acid undergoes decarboxylation to give 1,3,5-trinitrobenzene. [4] Reduction with tin gives 2,4,6-triaminobenzenoic acid, a precursor to phloroglucinol (1,3,5-trihydroxybenzene). [5]
If the elements in the problem are real numbers, the decision-tree lower bound extends to the real random-access machine model with an instruction set that includes addition, subtraction and multiplication of real numbers, as well as comparison and either division or remaindering ("floor"). [5]
Potential ID3-generated decision tree. Attributes are arranged as nodes by ability to classify examples. Values of attributes are represented by branches. In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset.
The problem is set in the model of decision tree complexity or query complexity and was conceived by Daniel R. Simon in 1994. [2] Simon exhibited a quantum algorithm that solves Simon's problem exponentially faster with exponentially fewer queries than the best probabilistic (or deterministic) classical algorithm. In particular, Simon's ...
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.