enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    A process with this property is said to be Markov or Markovian and known as a Markov process. Two famous classes of Markov process are the Markov chain and Brownian motion. Note that there is a subtle, often overlooked and very important point that is often missed in the plain English statement of the definition. Namely that the statespace of ...

  3. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    A Markov chain is a type of Markov process that has either a discrete state space or a discrete index set (often representing time), but the precise definition of a Markov chain varies. [6]

  4. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.

  5. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A Markov decision process is a Markov chain in which state transitions depend on the current state and an action vector that is applied to the system. Typically, a Markov decision process is used to compute a policy of actions that will maximize some utility with respect to expected rewards.

  6. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.

  7. Markov decision process - Wikipedia

    en.wikipedia.org/wiki/Markov_decision_process

    The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.

  8. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    Suppose that one starts with $10, and one wagers $1 on an unending, fair, coin toss indefinitely, or until all of the money is lost. If represents the number of dollars one has after n tosses, with =, then the sequence {:} is a Markov process.

  9. Markov renewal process - Wikipedia

    en.wikipedia.org/wiki/Markov_renewal_process

    Defining a new stochastic process := for [, +), then the process is called a semi-Markov process as it happens in a continuous-time Markov chain. The process is Markovian only at the specified jump instants, justifying the name semi-Markov. [1] [2] [3] (See also: hidden semi-Markov model.) A semi-Markov process (defined in the above bullet ...