Search results
Results from the WOW.Com Content Network
Cicero Discovering the Tomb of Archimedes (1805) by Benjamin West. Archimedes was born c. 287 BC in the seaport city of Syracuse, Sicily, at that time a self-governing colony in Magna Graecia. The date of birth is based on a statement by the Byzantine Greek scholar John Tzetzes that Archimedes lived for 75 years before his death in 212 BC. [9]
Illustration of the Archimedean property. In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields.
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics .
Archimedes, that he might transport the entire globe from the place it occupied to another, demanded only a point that was firm and immovable; so, also, I shall be entitled to entertain the highest expectations, if I am fortunate enough to discover only one thing that is certain and indubitable.
The Archimedes' screw, also known as the Archimedean screw, hydrodynamic screw, water screw or Egyptian screw, [1] is one of the earliest hydraulic machines named after Greek mathematician Archimedes who first described it around 234 BC, although the device had been developed in Egypt earlier in the century. [2]
Archimedes' idea is to use the law of the lever to determine the areas of figures from the known center of mass of other figures. [1]: 8 The simplest example in modern language is the area of the parabola. A modern approach would be to find this area by calculating the integral =,
The Archimedean solids have a single vertex configuration and highly symmetric properties. A vertex configuration indicates which regular polygons meet at each vertex. For instance, the configuration indicates a polyhedron in which each vertex is met by alternating two triangles and two pentagons.
The sets of the integers, the rational numbers, and the real numbers, together with the operation of addition and the usual ordering (≤), are Archimedean groups.Every subgroup of an Archimedean group is itself Archimedean, so it follows that every subgroup of these groups, such as the additive group of the even numbers or of the dyadic rationals, also forms an Archimedean group.