Search results
Results from the WOW.Com Content Network
Big data analytics has been used in healthcare in providing personalized medicine and prescriptive analytics, clinical risk intervention and predictive analytics, waste and care variability reduction, automated external and internal reporting of patient data, standardized medical terms and patient registries.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
In data-driven analytics, a common problem is quantifying whether larger data sizes and/or more complex data elements actually enhance, degrade, or alter the data information content and utility. The data value metric (DVM) quantifies the useful information content of large and heterogeneous datasets in terms of the tradeoffs between the size ...
Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.
Thomas Davenport, professor of information technology and management at Babson College argues that business intelligence should be divided into querying, reporting, Online analytical processing (OLAP), an "alerts" tool, and business analytics. In this definition, business analytics is the subset of BI focusing on statistics, prediction, and ...
A cloud-based architecture for enabling big data analytics. Data flows from various sources, such as personal computers, laptops, and smart phones, through cloud services for processing and analysis, finally leading to various big data applications. Cloud computing can offer access to large amounts of computational power and storage. [40]
The difficulty in ensuring data quality is integrating and reconciling data across different systems, and then deciding what subsets of data to make available. [3] Previously, analytics was considered a type of after-the-fact method of forecasting consumer behavior by examining the number of units sold in the last quarter or the last year. This ...
Journal of Big Data is a scientific journal that publishes open-access original research on big data.Published by SpringerOpen since 2014, it examines data capture and storage; search, sharing, and analytics; big data technologies; data visualization; architectures for massively parallel processing; data mining tools and techniques; machine learning algorithms for big data; cloud computing ...