Search results
Results from the WOW.Com Content Network
In Feynman subscript notation, = + where the notation ∇ B means the subscripted gradient operates on only the factor B. [ 1 ] [ 2 ] Less general but similar is the Hestenes overdot notation in geometric algebra . [ 3 ]
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
In Einstein notation (implicit summation over repeated index), contravariant components are denoted with upper indices as in = A covector or cotangent vector has components that co-vary with a change of basis in the corresponding (initial) vector space. That is, the components must be transformed by the same matrix as the change of basis matrix ...
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del. The notation grad f is also commonly used to ...
The gradient of a function is obtained by raising the index of the differential , whose components are given by: =; =; =, = = The divergence of a vector field with components is
For compactness and convenience, the Ricci calculus incorporates Einstein notation, which implies summation over indices repeated within a term and universal quantification over free indices. Expressions in the notation of the Ricci calculus may generally be interpreted as a set of simultaneous equations relating the components as functions ...
The Einstein tensor allows the Einstein field equations to be written in the concise form: + =, where is the cosmological constant and is the Einstein gravitational constant. From the explicit form of the Einstein tensor , the Einstein tensor is a nonlinear function of the metric tensor, but is linear in the second partial derivatives of the ...
In differential geometry, the four-gradient (or 4-gradient) is the four-vector analogue of the gradient from vector calculus. In special relativity and in quantum mechanics , the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors .