Search results
Results from the WOW.Com Content Network
Isopropyl β-d-1-thiogalactopyranoside (IPTG) is a molecular biology reagent. This compound is a molecular mimic of allolactose , a lactose metabolite that triggers transcription of the lac operon , and it is therefore used to induce protein expression where the gene is under the control of the lac operator .
While E. coli BL21(DE3) supports the expression of genes under the control of constitutive promoters, it is specifically engineered for IPTG induction of recombinant genes under the control of a T7 promoter. The realized induction strength depends on several factors, including the IPTG concentration and the timing of its supplementation. [5]
An extensive 2017 review [37] describes effects of exercise on the brain due to (1) DNA methylation, (2) histone acetylation, (3) histone methylation, and (4) microRNA expression, and the consequences of these alterations on learning and memory . Generally, the reviews found that exercise had positive effects on cognition, including enhanced ...
IPTG is a reagent which mimics the structure of allolactose, and can therefore bind to the lac repressor and prevent it from inhibiting gene expression. Once enough IPTG is added, the T7 gene is normally transcribed and so transcription of the gene of interest downstream of the T7 promoter also begins. [6]
Neuroplasticity is the process by which neurons adapt to a disturbance over time, and most often occurs in response to repeated exposure to stimuli. [27] Aerobic exercise increases the production of neurotrophic factors [note 1] (e.g., BDNF, IGF-1, VEGF) which mediate improvements in cognitive functions and various forms of memory by promoting blood vessel formation in the brain, adult ...
During a window of no induction (window of memory), some genes maintain a poised but transcriptionally silent state that results in a stronger gene activation upon a second challenge. Transcriptional memory is a biological phenomenon, initially discovered in yeast, [ 1 ] during which cells primed with a particular cue show increased rates of ...
The gut–memory connection is the relation between the gastrointestinal tract and memory performance. The phenomenon of the gut–memory connection is based on and part of the idea of the gut-brain axis, a complex communication network, linking the central nervous system to the gut.
Expression of IEG c-Fos in neurons responding to stimulation with potassium treatment. Some IEGs such as ZNF268 and Arc have been implicated in learning and memory and long-term potentiation. [12] [13] A wide range of neuronal stimulation have been shown to induce IEG expression ranging from sensory and behavioral to drug-induced convulsions. [9]