Search results
Results from the WOW.Com Content Network
For comparison, a conventional incandescent light bulb of 60–100 watts emits around 15 lm/W, and standard fluorescent lights emit up to 100 lm/W. As of 2012, Philips had achieved the following efficacies for each color. [8] The efficiency values show the physics – light power out per electrical power in.
The equation PV = nRT represents the ideal gas law, where P is the pressure of the gas, V is the volume, n is the number of moles, R is the universal gas constant, and T is the temperature. Gibbs's free energy formula
If one illuminates two parallel slits, the light from the two slits again interferes. Here the interference is a more pronounced pattern with a series of alternating light and dark bands. The width of the bands is a property of the frequency of the illuminating light. [20] (See the bottom photograph to the right.) Young's drawing of diffraction
The incandescent light bulb, an early application of electricity, operates by Joule heating: the passage of current through resistance generating heat. Electricity is a very convenient way to transfer energy, and it has been adapted to a huge, and growing, number of uses. [75]
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
Luminous flux is often used as an objective measure of the useful light emitted by a light source, and is typically reported on the packaging for light bulbs, although it is not always prominent. Consumers commonly compare the luminous flux of different light bulbs since it provides an estimate of the apparent amount of light the bulb will ...
Visulization of flux through differential area and solid angle. As always ^ is the unit normal to the incident surface A, = ^, and ^ is a unit vector in the direction of incident flux on the area element, θ is the angle between them.
Light exerts physical pressure on objects in its path, a phenomenon which can be deduced by Maxwell's equations, but can be more easily explained by the particle nature of light: photons strike and transfer their momentum. Light pressure is equal to the power of the light beam divided by c, the speed of light.