enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Effective mass (spring–mass system) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(spring...

    The effective mass of the spring in a spring-mass system when using a heavy spring (non-ideal) of uniform linear density is of the mass of the spring and is independent of the direction of the spring-mass system (i.e., horizontal, vertical, and oblique systems all have the same effective mass). This is because external acceleration does not ...

  3. Mass-spring-damper model - Wikipedia

    en.wikipedia.org/wiki/Mass-spring-damper_model

    The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers. This model is well-suited for modelling object with complex material properties such as nonlinearity and viscoelasticity .

  4. Spring system - Wikipedia

    en.wikipedia.org/wiki/Spring_system

    A 2-dimensional spring system. In engineering and physics, a spring system or spring network is a model ... which gives the linear equation: ... Spring-mass system;

  5. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    For a single damped mass-spring system, the Q factor represents the effect of simplified viscous damping or drag, where the damping force or drag force is proportional to velocity. The formula for the Q factor is: Q = M k D , {\displaystyle Q={\frac {\sqrt {Mk}}{D}},\,} where M is the mass, k is the spring constant, and D is the damping ...

  6. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  7. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  8. Natural frequency - Wikipedia

    en.wikipedia.org/wiki/Natural_frequency

    In a mass–spring system, with mass m and spring stiffness k, the natural angular frequency can be calculated as: = In an electrical network , ω is a natural angular frequency of a response function f ( t ) if the Laplace transform F ( s ) of f ( t ) includes the term Ke − st , where s = σ + ω i for a real σ , and K ≠ 0 is a constant ...

  9. Reduced mass - Wikipedia

    en.wikipedia.org/wiki/Reduced_mass

    For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system. The limit of the reduced mass formula as one mass goes to infinity is the smaller mass, thus this approximation is used to ease calculations, especially when the larger ...