Search results
Results from the WOW.Com Content Network
Since every proper, orthochronous Lorentz transformation can be written as a product of a rotation (specified by 3 real parameters) and a boost (also specified by 3 real parameters), it takes 6 real parameters to specify an arbitrary proper orthochronous Lorentz transformation. This is one way to understand why the restricted Lorentz group is ...
Lorentz transformations can be parametrized by rapidity φ for a boost in the direction of a three-dimensional unit vector ^ = (,,), and a rotation angle θ about a three-dimensional unit vector ^ = (,,) defining an axis, so ^ = (,,) and ^ = (,,) are together six parameters of the Lorentz group (three for rotations and three for boosts). The ...
The Lorentz group has some properties that makes it "agreeable" and others that make it "not very agreeable" within the context of representation theory; the group is simple and thus semisimple, but is not connected, and none of its components are simply connected. Furthermore, the Lorentz group is not compact. [31]
Under a proper orthochronous Lorentz transformation x → Λx in Minkowski space, all one-particle quantum states ψ j σ of spin j with spin z-component σ locally transform under some representation D of the Lorentz group: [12] [13] () where D(Λ) is some finite-dimensional representation, i.e. a matrix.
(The '3' refers to the three-dimensional space of an ordinary sphere.) Thus, the symmetry group of the sphere with proper rotations is SO(3). Any rotation preserves distances on the surface of the ball. The set of all Lorentz transformations form a group called the Lorentz group (this may be generalised to the Poincaré group).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The derivative operators, and hence the energy and 3-momentum operators, are also non-invariant and change under Lorentz transformations. Under a proper orthochronous Lorentz transformation (r, t) → Λ(r, t) in Minkowski space, all one-particle quantum states ψ σ locally transform under some representation D of the Lorentz group: [13] [14]
This notation is related to the notation O + (1, 3) for the orthochronous Lorentz group, where the + refers to preserving the orientation on the first (temporal) dimension. The group O( p , q ) is also not compact , but contains the compact subgroups O( p ) and O( q ) acting on the subspaces on which the form is definite.