Search results
Results from the WOW.Com Content Network
Natural uranium is made weapons-grade through isotopic enrichment. Initially only about 0.7% of it is fissile U-235, with the rest being almost entirely uranium-238 (U-238). They are separated by their differing masses. Highly enriched uranium is considered weapons-grade when it has been enriched to about 90% U-235. [citation needed]
Uranium-235 (235 U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide. Uranium-235 has a half-life of 703.8 million years.
Uranium appears in nature primarily in two isotopes: uranium-238 and uranium-235. When the nucleus of uranium-235 absorbs a neutron, it undergoes nuclear fission, releasing energy and, on average, 2.5 neutrons. Because uranium-235 releases more neutrons than it absorbs, it can support a chain reaction and so is described as fissile. Uranium-238 ...
Fission product yields by mass for thermal neutron fission of U-235 and Pu-239 (the two typical of current nuclear power reactors) and U-233 (used in the thorium cycle). This page discusses each of the main elements in the mixture of fission products produced by nuclear fission of the common nuclear fuels uranium and plutonium.
Uranium-238 will fission when struck by a neutron with 1.6 megaelectronvolts (0.26 pJ), and about half the neutrons produced by the fission of uranium-235 will exceed this threshold. However, a fast neutron striking a uranium-238 nucleus is eight times as likely to be inelastically scattered as to produce a fission, and when it does so, it is ...
The "special nuclear materials" are also plutonium-239, uranium-233, and enriched uranium (U-235). Note that the 1980 Convention on the Physical Protection of Nuclear Material definition of nuclear material does not include thorium. [4] The NRC has a regulatory process for nuclear materials with five main components. [5]
As a result, fissile materials (such as uranium-235) are a subset of fissionable materials. Uranium-235 fissions with low-energy thermal neutrons because the binding energy resulting from the absorption of a neutron is greater than the critical energy required for fission; therefore uranium-235 is fissile. By contrast, the binding energy ...
Enrichment processes generate uranium with a higher-than-natural concentration of lower-mass-number uranium isotopes (in particular 235 U, which is the uranium isotope supporting the fission chain reaction) with the bulk of the feed ending up as depleted uranium. Natural uranium metal contains about 0.71% 235 U, 99.28% 238 U, and about 0.0054% ...