Search results
Results from the WOW.Com Content Network
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
If is negative, the spacetime interval is said to be spacelike. Spacetime intervals are equal to zero when =. In other words, the spacetime interval between two events on the world line of something moving at the speed of light is zero. Such an interval is termed lightlike or null. A photon arriving in our eye from a distant star will not have ...
This is a list of well-known spacetimes in general relativity. [1] Where the metric tensor is given, a particular choice of coordinates is used, but there are often other useful choices of coordinate available.
A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity.Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.
In an isotropic chart (on a static spherically symmetric spacetime), the metric (aka line element) takes the form = + (+ (+ ())), < <, < <, < <, < < Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation).
In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres.In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres.
In Einstein's theory of relativity, the path of an object moving relative to a particular frame of reference is defined by four coordinate functions x μ (τ), where μ is a spacetime index which takes the value 0 for the timelike component, and 1, 2, 3 for the spacelike coordinates.
This gives ∂y 1 / ∂x = −sin x / r and ∂y 2 / ∂x = cos x / r In this case the metric is a scalar and is given by g = cos 2 x / r + sin 2 x / r = 1. The interval is then ds 2 = g dx 2 = dx 2. The interval is just equal to the arc length as expected.