enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transfer function - Wikipedia

    en.wikipedia.org/wiki/Transfer_function

    The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...

  3. Closed-loop transfer function - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_transfer_function

    The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:

  4. C++ classes - Wikipedia

    en.wikipedia.org/wiki/C++_classes

    A class in C++ is a user-defined type or data structure declared with any of the keywords class, struct or union (the first two are collectively referred to as non-union classes) that has data and functions (also called member variables and member functions) as its members whose access is governed by the three access specifiers private, protected or public.

  5. Control flow - Wikipedia

    en.wikipedia.org/wiki/Control_flow

    a b c Deep breaks may be accomplished in APL, C, C++ and C# through the use of labels and gotos. a Iteration over objects was added in PHP 5. a b c A counting loop can be simulated by iterating over an incrementing list or generator, for instance, Python's range() .

  6. Transfer function matrix - Wikipedia

    en.wikipedia.org/wiki/Transfer_function_matrix

    In systems engineering, the overall system transfer matrix G (s) is decomposed into two parts: H (s) representing the system being controlled, and C(s) representing the control system. C (s) takes as its inputs the inputs of G (s) and the outputs of H (s). The outputs of C (s) form the inputs for H (s). [3]

  7. Proper transfer function - Wikipedia

    en.wikipedia.org/wiki/Proper_transfer_function

    A strictly proper transfer function is a transfer function where the degree of the numerator is less than the degree of the denominator. The difference between the degree of the denominator (number of poles) and degree of the numerator (number of zeros) is the relative degree of the transfer function.

  8. call-with-current-continuation - Wikipedia

    en.wikipedia.org/wiki/Call-with-current-continuation

    Calling f with a regular function argument first applies this function to the value 2, then returns 3. However, when f is passed to call/cc (as in the last line of the example), applying the parameter (the continuation) to 2 forces execution of the program to jump to the point where call/cc was called, and causes call/cc to return the value 2.

  9. Type signature - Wikipedia

    en.wikipedia.org/wiki/Type_signature

    Notice that the type of the result can be regarded as everything past the first supplied argument. This is a consequence of currying, which is made possible by Haskell's support for first-class functions; this function requires two inputs where one argument is supplied and the function is "curried" to produce a function for the argument not supplied.