enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entropy (energy dispersal) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(energy_dispersal)

    The concept of 'dissipation of energy' was used in Lord Kelvin's 1852 article "On a Universal Tendency in Nature to the Dissipation of Mechanical Energy." [15] He distinguished between two types or "stores" of mechanical energy: "statical" and "dynamical." He discussed how these two types of energy can change from one form to the other during a ...

  3. Extremal principles in non-equilibrium thermodynamics

    en.wikipedia.org/wiki/Extremal_principles_in_non...

    Energy dissipation and entropy production extremal principles are ideas developed within non-equilibrium thermodynamics that attempt to predict the likely steady states and dynamical structures that a physical system might show. The search for extremum principles for non-equilibrium thermodynamics follows their successful use in other branches ...

  4. Dissipation - Wikipedia

    en.wikipedia.org/wiki/Dissipation

    In thermodynamics, dissipation is the result of an irreversible process that affects a thermodynamic system.In a dissipative process, energy (internal, bulk flow kinetic, or system potential) transforms from an initial form to a final form, where the capacity of the final form to do thermodynamic work is less than that of the initial form.

  5. Tidal heating - Wikipedia

    en.wikipedia.org/wiki/Tidal_heating

    This energy gained by the object comes from its orbital energy and/or rotational energy, so over time in a two-body system, the initial elliptical orbit decays into a circular orbit (tidal circularization) and the rotational periods of the two bodies adjust towards matching the orbital period (tidal locking). Sustained tidal heating occurs when ...

  6. Turbulence kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Turbulence_kinetic_energy

    Turbulence kinetic energy is then transferred down the turbulence energy cascade, and is dissipated by viscous forces at the Kolmogorov scale. This process of production, transport and dissipation can be expressed as: D k D t + ∇ ⋅ T ′ = P − ε , {\displaystyle {\frac {Dk}{Dt}}+\nabla \cdot T'=P-\varepsilon ,} where: [ 1 ]

  7. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Energy (from Ancient Greek ἐνέργεια (enérgeia) 'activity') is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light.

  8. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  9. Fluctuation–dissipation theorem - Wikipedia

    en.wikipedia.org/wiki/Fluctuation–dissipation...

    The fluctuation–dissipation theorem says that when there is a process that dissipates energy, turning it into heat (e.g., friction), there is a reverse process related to thermal fluctuations. This is best understood by considering some examples: