enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity is a special case of Euler's formula, which states that for any real number x, e i x = cos ⁡ x + i sin ⁡ x {\displaystyle e^{ix}=\cos x+i\sin x} where the inputs of the trigonometric functions sine and cosine are given in radians .

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Substituting r(cos θ + i sin θ) for e ix and equating real and imaginary parts in this formula gives ⁠ dr / dx ⁠ = 0 and ⁠ dθ / dx ⁠ = 1. Thus, r is a constant, and θ is x + C for some constant C. The initial values r(0) = 1 and θ(0) = 0 come from e 0i = 1, giving r = 1 and θ = x.

  4. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The global maximum of xx occurs at x = e. Steiner's problem asks to find the global maximum for the function =. This maximum occurs precisely at x = e. (One can check that the derivative of ln f(x) is zero only for this value of x.) Similarly, x = 1/e is where the global minimum occurs for the function

  5. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The graph always lies above the x-axis, but becomes arbitrarily close to it for large negative x; thus, the x-axis is a horizontal asymptote. The equation d d x e x = e x {\displaystyle {\tfrac {d}{dx}}e^{x}=e^{x}} means that the slope of the tangent to the graph at each point is equal to its height (its y -coordinate) at that point.

  6. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    e aX e bX = e (a + b)X; e X e −X = I; Using the above results, we can easily verify the following claims. If X is symmetric then e X is also symmetric, and if X is skew-symmetric then e X is orthogonal. If X is Hermitian then e X is also Hermitian, and if X is skew-Hermitian then e X is unitary.

  7. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...

  8. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Define to be the unique number y > 0 such that =. That is, e x {\displaystyle e^{x}} is the inverse of the natural logarithm function x = ln ⁡ ( y ) {\displaystyle x=\ln(y)} , which is defined by this integral.

  9. Sign function - Wikipedia

    en.wikipedia.org/wiki/Sign_function

    Signum function = ⁡. In mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero.