Search results
Results from the WOW.Com Content Network
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
It can be seen from the tables that the pass rate (score of 3 or higher) of AP Calculus BC is higher than AP Calculus AB. It can also be noted that about 1/3 as many take the BC exam as take the AB exam. A possible explanation for the higher scores on BC is that students who take AP Calculus BC are more prepared and advanced in math.
Logarithmic spiral (pitch 10°) A section of the Mandelbrot set following a logarithmic spiralA logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature.
The Hubbert curve [2] is the first derivative of a logistic function, which has been used for modeling the depletion of crude oil in particular, the depletion of finite mineral resources in general [3] and also population growth patterns. [4] Example of a Hubbert Linearization on the US Lower-48 crude oil production.
Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series
Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.
As mentioned above, the logistic map can be used as a model to consider the fluctuation of population size. In this case, the variable x of the logistic map is the number of individuals of an organism divided by the maximum population size, so the possible values of x are limited to 0 ≤ x ≤ 1.
As the logistic distribution, which can be solved analytically, is similar to the normal distribution, it can be used instead. The blue picture illustrates an example of fitting the logistic distribution to ranked October rainfalls—that are almost normally distributed—and it shows the 90% confidence belt based on the binomial distribution.