Search results
Results from the WOW.Com Content Network
In all, the higher heating value of hydrogen is 18.2% above its lower heating value (142 MJ/kg vs. 120 MJ/kg). For hydrocarbons, the difference depends on the hydrogen content of the fuel. For gasoline and diesel the higher heating value exceeds the lower heating value by about 10% and 7%, respectively, and for natural gas about 11%.
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
Natural uranium (0.7% U235) in light-water reactor: 443,000: 35%: Ta-180m isomer: 41,340: 689,964: Metallic hydrogen (recombination energy) 216 [2] Specific orbital energy of Low Earth orbit (approximate) 33.0: Beryllium + Oxygen: 23.9 [3] Lithium + Fluorine: 23.75 [citation needed] Octaazacubane potential explosive: 22.9 [4] Hydrogen + Oxygen ...
Monatomic gas heat capacities per atom (not per molecule) are decreased by a factor of 2 with regard to solids, due to loss of half of the potential degrees of freedom per atom for storing energy in a monatomic gas, as compared with regard to an ideal solid. There is some difference in the heat capacity of monatomic vs. polyatomic gasses, and ...
A 1 inch tall uranium fuel pellet is equivalent to about 1 ton of coal, 120 gallons of crude oil, or 17,000 cubic feet of natural gas. [15] In light-water reactors , 1 kg of natural uranium – following a corresponding enrichment and used for power generation– is equivalent to the energy content of nearly 10,000 kg of mineral oil or 14,000 ...
The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg −1 ⋅K −1, 790 J⋅kg −1 ⋅K −1, and 14300 J⋅kg −1 ⋅K −1, respectively. [4] While the substance is undergoing a phase transition , such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into ...
One GGE of natural gas is 126.67 cubic feet (3.587 m 3) at standard conditions. This volume of natural gas has the same energy content as one US gallon of gasoline (based on lower heating values: 900 BTU/cu ft (9.3 kWh/m 3) of natural gas and 114,000 BTU/US gal (8.8 kWh/L) for gasoline). [22]
The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely ...