Search results
Results from the WOW.Com Content Network
In the mathematical fields of linear algebra and functional analysis, the orthogonal complement of a subspace of a vector space equipped with a bilinear form is the set of all vectors in that are orthogonal to every vector in .
It follows that the left null space (the null space of A T) is the orthogonal complement to the column space of A. For a matrix A, the column space, row space, null space, and left null space are sometimes referred to as the four fundamental subspaces.
The row space, or coimage, of a matrix A is the span of the row vectors of A. By the above reasoning, the kernel of A is the orthogonal complement to the row space. That is, a vector x lies in the kernel of A, if and only if it is perpendicular to every vector in the row space of A.
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
The Schur complement arises when performing a block Gaussian elimination on the matrix M.In order to eliminate the elements below the block diagonal, one multiplies the matrix M by a block lower triangular matrix on the right as follows: = [] [] [] = [], where I p denotes a p×p identity matrix.
In linear algebra, this subspace is known as the column space (or image) of the matrix A. It is precisely the subspace of K n spanned by the column vectors of A. The row space of a matrix is the subspace spanned by its row vectors. The row space is interesting because it is the orthogonal complement of the null space (see below).
An orthogonal matrix is a matrix whose column vectors are orthonormal to each other. An orthonormal basis is a basis whose vectors are both orthogonal and normalized (they are unit vectors ). A conformal linear transformation preserves angles and distance ratios, meaning that transforming orthogonal vectors by the same conformal linear ...
In mathematical functional analysis a partial isometry is a linear map between Hilbert spaces such that it is an isometry on the orthogonal complement of its kernel. The orthogonal complement of its kernel is called the initial subspace and its range is called the final subspace. Partial isometries appear in the polar decomposition.