enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gambler's ruin - Wikipedia

    en.wikipedia.org/wiki/Gambler's_ruin

    Consider a coin-flipping game with two players where each player has a 50% chance of winning with each flip of the coin. After each flip of the coin the loser transfers one penny to the winner. The game ends when one player has all the pennies. If there are no other limitations on the number of flips, the probability that the game will ...

  3. Gambling mathematics - Wikipedia

    en.wikipedia.org/wiki/Gambling_mathematics

    The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory.From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.

  4. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    Tossing a coin. Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives. It is a form of sortition which inherently has two possible outcomes. The party who calls the side that is facing up when the coin ...

  5. Penney's game - Wikipedia

    en.wikipedia.org/wiki/Penney's_game

    As this card-based version is quite similar to multiple repetitions of the original coin game, the second player's advantage is greatly amplified. The probabilities are slightly different because the odds for each flip of a coin are independent while the odds of drawing a red or black card each time is dependent on previous draws. Note that HHT ...

  6. Gambler's fallacy - Wikipedia

    en.wikipedia.org/wiki/Gambler's_fallacy

    If a fair coin is flipped 21 times, the probability of 21 heads is 1 in 2,097,152. The probability of flipping a head after having already flipped 20 heads in a row is ⁠ 1 / 2 ⁠. Assuming a fair coin: The probability of 20 heads, then 1 tail is 0.5 20 × 0.5 = 0.5 21; The probability of 20 heads, then 1 head is 0.5 20 × 0.5 = 0.5 21

  7. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    A gambler's fortune (capital) is a martingale if all the betting games which the gambler plays are fair. The gambler is playing a game of coin flipping. Suppose X n is the gambler's fortune after n tosses of a fair coin, such that the gambler wins $1 if the coin toss outcome is heads and loses $1 if the coin toss outcome is tails. The gambler's ...

  8. Martingale (betting system) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(betting_system)

    In this example, the probability of losing the entire bankroll and being unable to continue the martingale is equal to the probability of 6 consecutive losses: (10/19) 6 = 2.1256%. The probability of winning is equal to 1 minus the probability of losing 6 times: 1 − (10/19) 6 = 97.8744%. The expected amount won is (1 × 0.978744) = 0.978744.

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Consider a simple statistical model of a coin flip: a single parameter that expresses the "fairness" of the coin. The parameter is the probability that a coin lands heads up ("H") when tossed. can take on any value within the range 0.0 to 1.0. For a perfectly fair coin, =. Imagine flipping a fair coin twice, and observing two heads in two ...