enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives. It is a form of sortition which inherently has two possible outcomes.

  3. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  4. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    A fair coin, when tossed, should have an equal chance of landing either side up. In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin.

  5. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin.

  6. Almost surely - Wikipedia

    en.wikipedia.org/wiki/Almost_surely

    2.2 Tossing a coin repeatedly. 3 Asymptotically almost surely. ... For this particular coin, it is assumed that the probability of flipping a head is () = ...

  7. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The entropy of the unknown result of the next toss of the coin is maximized if the coin is fair (that is, if heads and tails both have equal probability 1/2). This is the situation of maximum uncertainty as it is most difficult to predict the outcome of the next toss; the result of each toss of the coin delivers one full bit of information.

  8. Penney's game - Wikipedia

    en.wikipedia.org/wiki/Penney's_game

    Player A selects a sequence of heads and tails (of length 3 or larger), and shows this sequence to player B. Player B then selects another sequence of heads and tails of the same length. Subsequently, a fair coin is tossed until either player A's or player B's sequence appears as a consecutive subsequence of the coin toss outcomes. The player ...

  9. Feller's coin-tossing constants - Wikipedia

    en.wikipedia.org/wiki/Feller's_coin-tossing...

    Feller's coin-tossing constants are a set of numerical constants which describe asymptotic probabilities that in n independent tosses of a fair coin, no run of k consecutive heads (or, equally, tails) appears. William Feller showed [1] that if this probability is written as p(n,k) then